Quantum Simulation using Optical Lattices B. DeMarco, University of Illinois at Urbana-Champaign

Hubbard model loose endsThermometry and Cooling

Agenda:

- Characteristic density; universal phase diagrams
- Challenges in cooling (and thermometry)
- Spin-dependent lattices: something we are doing about it (that won't work)

The Premise: an example

High temperature superconductivity / Hubbard model

$$(\textcircled{\baseline 1}) (\textcircled{\baseline 1}) (\textcircled{\$$

$$\begin{split} H = -t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} \\ \text{tunneling} & \text{interactions} \end{split}$$

Can Hubbard model produce d-wave SC?Nature of pseudo-gap phase?

BH Phase Diagram

$$H = -t\sum_{\langle ij \rangle} b_i^{\dagger} b_j + \frac{U}{2}\sum_i n_i \left(n_i - 1\right) + \sum_i n_i \varepsilon_i$$

Effective chemical potential:

$$\tilde{\mu} = \mu - m\omega^2 r_i^2/2$$

Universal phase diagram: bosons

Characteristic density

$$\tilde{\rho} = N \left(\frac{m\omega^2 d^2}{2jt} \right)^{j/2}$$

j: dimensionality

Rigol

Deviation from LDA

Universal phase diagram: fermions

De Leo, Kollath, Georges, Ferrero, and Olivier Parcollet

$$H = -t \sum_{\langle ij \rangle, \sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} + \sum_{i,\sigma} n_{i,\sigma} \varepsilon_{i,\sigma}$$

Fermi Liquid

(Zweirlein)

Universal phase diagram: fermions

M

De Leo, Kollath, Georges, Ferrero, and Olivier Parcollet

$$H = -t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} + \sum_{i,\sigma} n_{i,\sigma} \varepsilon_{i,\sigma}$$

$$Fermi \\ Liquid \\Band \\ Insulator \\S:$$

$$S:$$

$$I = 0$$

Anti-ferromagnetic (AFM) order

Effective $t/U \ll 1$ Hamiltonian: $H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \qquad J = 4t^2/U$

AFM achieved for $S/N = \frac{1}{2}k_B ln2 \approx 0.4 k_B$ So far out of reach!

Requires $T/T_F = 0.03$ (ideal gas)... ...state-of-the-art in lattice: $T/T_F = 0.1$ (?)

A solution?

Species / spindependent lattice

- Two spin states
- Two atomic species (⁴⁰K/⁸⁷Rb, ¹³³Cs/⁴⁰K)

Real Atoms

$$U_{dip} = \frac{\pi c^2 \Gamma}{2\omega_0} \left(\frac{2 + Pg_F m_F}{\delta_{3/2}} + \frac{1 - Pg_F m_F}{\delta_{1/2}} \right) I(\vec{r})$$

 $P = -1 \ (\sigma^{-}), 0 \ (\pi), 1 \ (\sigma^{+})$ Polarization *in the atomic basis* $\Gamma = \frac{\omega_0^3}{3\pi\epsilon_0 \hbar c^3} |\langle e|e\vec{r}|g \rangle|^2 = 1/\tau \approx 2\pi \times 6 \ MHz$

A note about polarization Polarization in the atomic basis

$$\hat{\pi} = \hat{z}$$
$$\hat{\sigma}^+ = -(\hat{x} + i \,\hat{y})/\sqrt{2}$$
$$\hat{\sigma}^- = (\hat{x} - i \,\hat{y})/\sqrt{2}$$

Polarization Gradient Lattices

3D Spin-Dependent Lattices

Spin-Dependent Lattices

- No scalar lattice for θ =90° ("lin-perp-lin")
- Requires detuning comparable to fine structure splitting
- Lattice potential depth proportional to g_Fm_F
- Lattice wavevector can not be perpendicular to magnetic field along any lattice direction
- Scalar lattice vanishes for "magic" wavelength (790 nm)

Spin-Dependent Lattice Thermometry

θ=90°: "lin-perp-lin"

Lattice Technical Issues

Polarization Impurities

Create strong lattice for $m_F=0$ atoms

3D Spin-Dependent Lattice

3D Spin-Dependent Lattice

3D Spin-Dependent Lattice

Hexagonal spin-dependent lattice

Sengstock

Hexagonal spin-dependent lattices

Controlled Heating

Thermalization?

Invisible to |1,0>

Controlled Heating

Parametric Oscillation of the Lattice

Band decay and thermalization

*thermalization timescale for lattice atoms= 5–7 ms from 6–11 ER

Thermalization after controlled heating

In the harmonic trap (before loading the lattice), mixtures completely thermalize within 50 ms
In the lattice, we cannot even observe relaxation!

Controlled heating – raw data

Controlled heating: results

Theory: need to consider effective mass, single-particle localized states, lattice dispersion (Kapitza resistance?), interaction-induced localization...